

BSM Higgs Boson Searches at the Tevatron Collider

Frank Filthaut Radboud University Nijmegen / Nikhef for the D0 and CDF Collaborations

MCTP Higgs Symposium, May 13-15, 2010

Contents

MSSM

- Phenomenology
- Neutral Higgs → bb
- Neutral Higgs $\rightarrow \tau^+ \tau^-$
- Charged Higgs bosons
- Fermiophobic Higgs Bosons: $H \rightarrow \gamma \gamma$
- SM Extension to Four Fermion Generations
- NMSSM
- Phenomenology
- Charged Higgs bosons
- Light neutral Higgs bosons

Contents

MSSM

- Phenomenology
- Neutral Higgs → bb
- Neutral Higgs →τ⁺τ⁻
- Charged Higgs bosons
- Fermiophobic Higgs Bosons: $H \rightarrow \gamma \gamma$
- SM Extension to Four Fermion Generations
- NMSSM
 - Phenomenology
 - Charged Higgs bosons
 - Light neutral Higgs bosons

Many details omitted

- theory references (computations use FeynHiggs)
- detailed discussions of statistical treatment, systematics

MSSM Higgs Phenomenology: Tree Level

Higgs bosons in the MSSM: "Type-II" Two-Higgs Doublet Model

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix}, \quad H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}$$

- 5 Higgs bosons: H, h, A (neutral), H[±] (charged)
- dependence on 2 new parameters: M_A , tan $\beta \equiv v_u/v_d$
- Masses:

$$m_{h,H}^2 = \frac{1}{2} \left(m_A^2 + m_Z^2 \mp \sqrt{(m_A^2 - m_Z^2)^2 + 4m_Z^2 m_A^2 \sin^2(2\beta)} \right)$$

$$m_{H^{\pm}}^2 = m_A^2 + m_W^2$$

MSSM Higgs Phenomenology: Tree Level

Higgs bosons in the MSSM: "Type-II" Two-Higgs Doublet Model

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix}, \quad H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}$$

- 5 Higgs bosons: H, h, A (neutral), H[±] (charged)
- dependence on 2 new parameters: M_A, tan $\beta \equiv v_u/v_d$
- Masses:

•••

• $m_h < m_Z$ (!)

D	Couplings				
	Coupings.	SM particle type	h coupling	H coupling	A coupling
¢	neutral:	up-type quarks	$\frac{\cos\alpha}{\sin\beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\cot \beta$
		down-type quarks, ℓ^{\pm}	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\tan eta$
		W, Z bosons	$\sin(eta-lpha)$	$\cos(eta-lpha)$	0

 H^{\pm} tb coupling $\sim V_{tb}m_t \cot \beta(1-\gamma_5) + m_b \tan \beta(1+\gamma_5)$

α: CP-even Higgs mixing parameter

Beyond Tree Level

• Substantial corrections (e.g. to m_h, from top (s)quark loops) $\Delta(m_{h^0}^2) = \stackrel{h^0}{-} - \stackrel{t}{-} + \stackrel{h^0}{-} - \stackrel{t}{-} \stackrel{t}{-} + \stackrel{h^0}{-} - \stackrel{t}{-} \stackrel{t}{-} \stackrel{t}{-} - + \stackrel{h^0}{-} \stackrel{t}{-} \stackrel{t}{-} \stackrel{t}{-} - - + \stackrel{h^0}{-} \stackrel{t}{-} \stackrel{t}{-} \stackrel{t}{-} - -$

mass/coupling dependence on other SUSY parameters

Embodied in several scenarios (allowing to evade LEP bounds)

Beyond Tree Level

• Substantial corrections (e.g. to m_h, from top (s)quark loops) $\Delta(m_{h^0}^2) = \frac{h^0}{2} - \frac{1}{2} + \frac{h^0}{2} - \frac{1}{2} + \frac{h^0}{2} + \frac{h^0}{2} + \frac{1}{2} + \frac{h^0}{2} + \frac{1}{2} + \frac{h^0}{2} + \frac{1}{2} + \frac$

mass/coupling dependence on other SUSY parameters

Embodied in several scenarios (allowing to evade LEP bounds)

MSSM Belings Production at the Levatron

• LEP analyses focused $\alpha_{h_h} (Ge Z/c^2)$ associated production $m_h (GeV/c^2)$ • exclusion mainly at low tan β

- LEP analyses focused on ZH associated production
 meter exclusion mainly at low tanβ
- Most of the Tevatron programme focuses on high tanβ
 complementarity: different production mechanisms

- LEP analyses focused on ZH associated production
 meter exclusion mainly at low tanβ
- Most of the Tevatron programme focuses on high tanβ
 complementarity: different production mechanisms

- LEP analyses focused on ZH associated production
 meter exclusion mainly at low tanβ
- Most of the Tevatron programme focuses on high tanβ
 complementarity: different production mechanisms

- LEP analyses focused on ZH associated production
 meter exclusion mainly at low tanβ
- Most of the Tevatron programme focuses on high tanβ
 complementarity: different production mechanisms

- LEP analyses focused on ZH associated production
 meter exclusion mainly at low tanβ
- Most of the Tevatron programme focuses on high tanβ
 complementarity: different production mechanisms

General feature:

- masses, production cross sections for A, h/H very similar Ш " Φ "
- production of "other CP-even boson (H/h) ~ negligible

Analyses don't attempt to identify individual Higgs bosons, but look for an overall excess instead

- Largest branching fraction (~90%) ...
 but need extra b jet to be visible
 - triple b-tagged data, look for
 excess in invariant mass spectrum
 of leading b-tagged jets
 - emphasis on understanding multijet background

- Largest branching fraction (~90%) ...
 but need extra b jet to be visible
- triple b-tagged data, look for
 excess in invariant mass spectrum
 of leading b-tagged jets
- emphasis on understanding multijet background
- CDF analysis (2.5 fb⁻¹):
- create bkgd template shapes from double tagged sample (also in m_{vtx} variable: extra discrimination)
- template fit including also signal
- in absence of significant excess, use likelihood ratio to derive limits

- Largest branching fraction (~90%) ...
 but need extra b jet to be visible
- triple b-tagged data, look for
 excess in invariant mass spectrum
 of leading b-tagged jets
- emphasis on understanding multijet background
- CDF analysis (2.5 fb⁻¹):
- create bkgd template shapes from double tagged sample (also in m_{vtx} variable: extra discrimination)
- template fit including also signal
- in absence of significant excess, use likelihood ratio to derive limits

- Largest branching fraction (~90%) ...
 but need extra b jet to be visible
- triple b-tagged data, look for
 excess in invariant mass spectrum
 of leading b-tagged jets
- emphasis on understanding multijet background
- CDF analysis (2.5 fb⁻¹):
- create bkgd template shapes from double tagged sample (also in m_{vtx} variable: extra discrimination)
- template fit including also signal
- in absence of significant excess, use likelihood ratio to derive limits

- Largest branching fraction (~90%) ...
 but need extra b jet to be visible
- triple b-tagged data, look for
 excess in invariant mass spectrum
 of leading b-tagged jets
- emphasis on understanding multijet background
- CDF analysis (2.5 fb⁻¹):
- create bkgd template shapes from double tagged sample (also in m_{vtx} variable: extra discrimination)
- template fit including also signal
- in absence of significant excess, use likelihood ratio to derive limits

 $b\Phi \rightarrow bbb$ (2)

- For high tan β , the decay widths Γ_{Φ} become substantial
- resonance less easily distinguished is loss of sensitivity

bΦ → bbb (3)

- D0 analysis (2.6 fb⁻¹):
- separation into 3/4/5-jet samples
- flavour composition estimated using multiple b-tagging criteria
- Iikelihood discriminant to improve S/B ratio
- using topological information
- obtain from double-tagged data, use to predict triple-tagged bkgd

 $\frac{P_{\rm sig}(\vec{x})}{P_{\rm sig}(\vec{x}) + P_{\rm bka}(\vec{x})}$

=

bΦ → bbb (3)

- D0 analysis (2.6 fb⁻¹):
 - separation into 3/4/5-jet samples
- flavour composition estimated using multiple b-tagging criteria
- Iikelihood discriminant to improve S/B ratio
 - using topological information
 - obtain from double-tagged data, use to predict triple-tagged bkgd

 $\frac{P_{\rm sig}(\vec{x})}{P_{\rm sig}(\vec{x}) + P_{\rm bka}(\vec{x})}$

=

bΦ → bbb (3)

- D0 analysis (2.6 fb⁻¹):
- separation into 3/4/5-jet samples
- flavour composition estimated using multiple b-tagging criteria
- likelihood discriminant to improve S/B ratio
 - using topological information
 - obtain from double-tagged data, use to predict triple-tagged bkgd

 $= \frac{P_{\text{sig}}(\vec{x})}{P_{\text{sig}}(\vec{x}) + P_{\text{bka}}(\vec{x})}$

$\Phi \rightarrow \tau^+ \tau^-$

- Branching fraction only ~ 0.1, but much cleaner!
 can use this decay mode with gluon fusion channel
 - but need ≥ 1 leptonic decay: $T_{\mu}T_{had}$, $T_{e}T_{had}$, $T_{e}T_{\mu}$
 - T decays me no sharp mass peak
 - substantial backgrounds: $Z \rightarrow \tau^+\tau^-$, W^+ jets, multijets

$\Phi \rightarrow \tau^+\tau^-$

- Branching fraction only ~ 0.1, but much cleaner!
 can use this decay mode with gluon fusion channel
 - but need ≥ 1 leptonic decay: $T_{\mu}T_{had}$, $T_{e}T_{had}$, $T_{e}T_{\mu}$
 - T decays me no sharp mass peak
 - substantial backgrounds: $Z \rightarrow \tau^+\tau^-, W^+$ jets, multijets
- CDF published analysis (1.8 fb⁻¹):
 - using "visible mass"

 $m_{\text{vis}}^2 = (p_{\tau_1} + p_{\tau_2} + \not p_T)^2$ $\not p_T \equiv (\not E_T, \not E_X, \not E_Y, 0)$

- $Z \rightarrow \tau^+\tau^-$ from MC: energy scale
- instrumental backgrounds:
 from initial looser T_{had} selection,
 known fake rate

$\Phi \rightarrow \tau^+\tau^-$

- Branching fraction only ~ 0.1, but much cleaner!
 can use this decay mode with gluon fusion channel
 - but need ≥ 1 leptonic decay: $T_{\mu}T_{had}$, $T_{e}T_{had}$, $T_{e}T_{\mu}$
 - T decays me no sharp mass peak
 - substantial backgrounds: $Z \rightarrow \tau^+\tau^-$, W^+ jets, multijets
- CDF published analysis (1.8 fb⁻¹):
 - using "visible mass"

 $m_{\text{vis}}^2 = (p_{\tau_1} + p_{\tau_2} + \not p_T)^2$ $\not p_T \equiv (\not E_T, \not E_X, \not E_Y, 0)$

- $Z \rightarrow \tau^+\tau^-$ from MC: energy scale
- instrumental backgrounds: from initial looser T_{had} selection, known fake rate

$\Phi \rightarrow \tau^+\tau^-(2)$

- D0: extended published analysis (1 fb⁻¹) by 1.2 fb⁻¹ ($T_{\mu}T_{had}$)
- Analysis similar to CDF ($Z \rightarrow \tau^+\tau^-$, instrumental backgrounds)
 - optimised (NN) identification of $\tau \rightarrow \pi \nu_{\tau}$, $\tau \rightarrow \rho \nu_{\tau}$, 3-prong decays
 - additional rejection against W (\rightarrow e/ μ v) + jets background (M_T)

$\Phi \rightarrow \tau^+\tau^-(2)$

- D0: extended published analysis (1 fb⁻¹) by 1.2 fb⁻¹ ($T_{\mu}T_{had}$)
- Analysis similar to CDF ($Z \rightarrow \tau^+\tau^-$, instrumental backgrounds)
 - optimised (NN) identification of $\tau \rightarrow \pi \nu_{\tau}$, $\tau \rightarrow \rho \nu_{\tau}$, 3-prong decays
 - additional rejection against W (\rightarrow e/ μ v) + jets background (M_T)

$\Phi \rightarrow \tau^+\tau^-(2)$

- D0: extended published analysis (1 fb⁻¹) by 1.2 fb⁻¹ ($T_{\mu}T_{had}$)
- Analysis similar to CDF ($Z \rightarrow \tau^+\tau^-$, instrumental backgrounds)
- optimised (NN) identification of $\tau \rightarrow \pi \nu_{\tau}$, $\tau \rightarrow \rho \nu_{\tau}$, 3-prong decays
- additional rejection against W (\rightarrow e/ μ v) + jets background (M_T) ••• No-mixing, μ = +200 GeV $m_{h}^{max}, \mu = +200 \text{ GeV}$ <u>_</u>100 tan ⁹⁰ DØ prel., 1-2.2 fb¹ tan ⁹⁰ DØ prel., 1-2.2 fb¹ 80 80 70 70 60 60 50 50 40 40 **Observed** limit **Observed limit** 30 30 **Expected** limit **Expected** limit 20 20 LEP 2 LEP 2 10 10 0 0 100 120 200 220 240 120 220 140 160 100 140 160 180 200 240 180 M_{Δ} (GeV) M_{A} (GeV)

Limits generally (slightly) more restrictive than for bbb final state

$b\Phi \rightarrow b\tau^+\tau^-$

- Small overlap with inclusive $\tau^+\tau^-$ search, reduced $Z \rightarrow \tau^+\tau^-$ background at low $m_{\Phi} \implies$ complementarity
- D0 published analysis (2.7 fb⁻¹, $T_{\mu}T_{had}$):
 - dominant backgrounds: tt, multijet, Z+jets
 - estimate multijet background from same-sign events
 - enrich further using two (tt, multijet) multivariate discriminants

$b\Phi \rightarrow b\tau^+\tau^-$

- Small overlap with inclusive $\tau^+\tau^-$ search, reduced $Z \rightarrow \tau^+\tau^-$ background at low $m_{\Phi} \implies$ complementarity
- D0 published analysis (2.7 fb⁻¹, $T_{\mu}T_{had}$):
 - dominant backgrounds: tt, multijet, Z+jets
 - estimate multijet background from same-sign events
 - enrich further using two (tt, multijet) multivariate discriminants

$b\Phi \rightarrow b\tau^+\tau^-$

- Small overlap with inclusive $\tau^+\tau^-$ search, reduced $Z \rightarrow \tau^+\tau^-$ background at low $m_{\Phi} \implies$ complementarity
- D0 published analysis (2.7 fb⁻¹, $T_{\mu}T_{had}$):
 - dominant backgrounds: tt, multijet, Z+jets
 - estimate multijet background from same-sign events
 - enrich further using two (tt, multijet) multivariate discriminants

Several channels with similar sensitivity
 combining results makes sense!

D0: combination of all neutral MSSM Higgs boson results

NB: only 1.2 fb⁻¹ of bTT data used

Several channels with similar sensitivity
 combining results makes sense!

D0: combination of all neutral MSSM Higgs boson results

NB: only 1.2 fb⁻¹ of bTT data used

- Several channels with similar sensitivity
 combining results makes sense!
 - D0: combination of all neutral MSSM Higgs boson results
 - Tevatron: combination of T^+T^- results

- Several channels with similar sensitivity
 combining results makes sense!
 - D0: combination of all neutral MSSM Higgs boson results
 - Tevatron: combination of T^+T^- results

Charged Higgs Bosons

- Focus on $t \rightarrow H^+b$ decays (heavy $H \rightarrow tb$ out of Tevatron reach)
- exploited in multiple ways to search for $H \rightarrow cs, TV$ decays in tt events $M_{H^{+}}=100 \text{ GeV}$
- modified distribution of tt events over I+jets, I+I, and I+Thad final states
 - I = e, µ
- peak in I+jets di-jet invariant mass spectrum ($H \rightarrow cs$)

Charged Higgs Bosons: $H \rightarrow \tau v$

- High tanβ: dominant decay mode
- D0 analysis (0.9 fb⁻¹) of I+T_{had} mode:
 - separate 3-jet, >3-jet channels
 - significant background from W+jets is likelihood discriminant

Charged Higgs Bosons: $H \rightarrow \tau v$

- High tanβ: dominant decay mode
- D0 analysis (0.9 fb⁻¹) of I+T_{had} mode:
 - separate 3-jet, >3-jet channels
 - significant background from W+jets is likelihood discriminant
 - Fix $\sigma(tt)$ to SM value

(kinematic/topological variables)

- Better alternative: consider I+jets, I+I, I+T_{had} channels simultaneously
- D0 analysis (1 fb⁻¹):
- follow earlier individual analyses, but use ε(M_H)

- Better alternative: consider I+jets, I+I, I+Thad channels simultaneously
- D0 analysis (1 fb⁻¹):
 - follow earlier individual analyses, but use $\epsilon(M_H)$

Assuming $B(H \rightarrow \tau \nu) + B(H \rightarrow cs) = I$

- Better alternative: consider I+jets, I+I, I+T_{had} channels simultaneously
- D0 analysis (1 fb⁻¹):
- follow earlier individual analyses, but use ε(M_H)
- allows for simultaneous fits of $\sigma(tt) \implies$ improvement for small $M_H!$

- Better alternative: consider I+jets, I+I, I+T_{had} channels simultaneously
- D0 analysis (1 fb⁻¹):
- follow earlier individual analyses, but use ε(M_H)
- allows for simultaneous fits of $\sigma(tt) \implies$ improvement for small $M_H!$
- Interpretation in various MSSM scenarios

- Better alternative: consider I+jets, I+I, I+T_{had} channels simultaneously
- D0 analysis (1 fb⁻¹):
- follow earlier individual analyses, but use ε(M_H)
- allows for simultaneous fits of $\sigma(tt) \implies$ improvement for small $M_H!$
- Interpretation in various MSSM scenarios

Leptophobic Higgs: MSSM for low tanβ, Multi-Higgs Doublet models

- Better alternative: consider I+jets, I+I, I+T_{had} channels simultaneously
- D0 analysis (1 fb⁻¹):
- follow earlier individual analyses, but use ε(M_H)
- allows for simultaneous fits of $\sigma(tt) \implies$ improvement for small $M_H!$
- Interpretation in various MSSM scenarios

Charged Higgs Bosons: H→cs

- CDF analysis (2.2 fb⁻¹) of double-tagged I+jets final states:
 - kinematic fit using mt, (leptonic) MW constraints
 - binned ML fit to non-b di-jet mass distribution

Overall tt counts not constrained \blacksquare reduced sensitivity at $M_H \approx M_W$

Fermiophobic Higgs: $H \rightarrow \gamma \gamma$

q

 $q^{(\prime)}$

- Possible in various (more exotic) SM extensions
- Benchmark model: SM couplings to vector bosons, no couplings to fermions
- D0 analysis (4.2 fb⁻¹):
- Vh and VBF production lumped together (no "V" selection)
- NN γ identification

Fermiophobic Higgs: $H \rightarrow \gamma \gamma$

- Possible in various (more exotic) SM extensions
- Benchmark model: SM couplings to vector bosons, no couplings to fermions
- D0 analysis (4.2 fb⁻¹):
- Vh and VBF production lumped together (no "V" selection)
- NN γ identification
- cut on p_T(γγ)

q

q(′)

update from 2.7 fb⁻¹ Fermiophobic Higgs: H

DØ, 4.2 fb¹ preliminary

q^(')

120 M_{vv}(GeV)

data

jγ+jj

140

direct $\gamma\gamma$

Ζ/γ*->ee

160

180

Possible in various (more exotic) SM extensions

140

120

40

20

80

- Benchmark model: SM couplings to vector bosons, no couplings to fermions
- D0 analysis (4.2 fb⁻¹):
- Vh and VBF production lumped together (no "V" selection)
- NN y identification
- cut on $p_T(\gamma\gamma)$
- $jj/\gamma j$ identified using Events/5 GeV known fake rates
- fit signal in 20 GeV mass window

100

80

Fermiophobic Higgs: $H \rightarrow \gamma \gamma$

q^(')

- Possible in various (more exotic) SM extensions
- Benchmark model: SM couplings to vector bosons, no couplings to fermions
- D0 analysis (4.2 fb⁻¹):
- Vh and VBF production lumped together (no "V" selection)
- NN γ identification

h,

Fermiophobic Higgs: H →

Possible in various (more exotic) SM extensions

Entries/2 GeV/c²

- Benchmark model: SM couplings to vector bosons, no couplings to fermions
- CDF analysis (3 fb⁻¹):
- Vh and VBF production lumped together (as in D0 analysis)
- p_T(γγ) > 75 GeV
- Entries/2 GeV/ c^2 • fit with 10 GeV signal mass window

 \boldsymbol{q}

q(′)

Fermiophobic Higgs: $H \rightarrow \gamma \gamma$

18

- Possible in various (more exotic) SM extensions
- Benchmark model: SM couplings to vector bosons, no couplings to fermions
- CDF analysis (3 fb⁻¹):
- Vh and VBF production lumped together (as in D0 analysis)
- fit with 10 GeV
 signal mass window

submitted

000

€ t, b′, t′

Four Fermion Generations

- Straightforward SM extension
- evade $N_v=3$ constraint by heavy v
- enhanced $gg \rightarrow H$ cross section (factor 7.5 9)
- Tevatron combined analysis (CDF 4.8 fb⁻¹, D0 5.4 fb⁻¹) adjusting corresponding SM H \rightarrow W⁺W⁻ search:
 - correct signal acceptance for different VH, VBF admixtures

submitted

000

b',t'

Four Fermion Generations

- Straightforward SM extension
 - evade $N_v=3$ constraint by heavy v
- enhanced $gg \rightarrow H$ cross section (factor 7.5 9)
- Tevatron combined analysis (CDF 4.8 fb⁻¹, D0 5.4 fb⁻¹) adjusting corresponding SM H \rightarrow W⁺W⁻ search:
 - correct signal acceptance for different VH, VBF admixtures
- $H \rightarrow W^+W^-$ branching fraction affected by decays to heavy fermions $\implies 2$ scenarios (both: $m_{b'}$, $m_{t'} \sim 400 500$ GeV):
 - $m_l = 100 \text{ GeV}, m_v = 80 \text{ GeV}$
 - $m_l = m_v = I \text{ TeV}$

submitted

000

b',t'

Four Fermion Generations

- Straightforward SM extension
- evade $N_v=3$ constraint by heavy v
- enhanced $gg \rightarrow H$ cross section (factor 7.5 9)
- Tevatron combined analysis (CDF 4.8 fb⁻¹, D0 5.4 fb⁻¹) adjusting corresponding SM H \rightarrow W⁺W⁻ search:
 - correct signal acceptance for different VH, VBF admixtures

NMSSM Higgs Phenomenology

- NMSSM: adds one gauge singlet superfield
 - preserves ρ=1
- SSB: replaces µ (MSSM) with dimensionless coupling constant
- Higgs sector:
- additional CP-odd (a) and CP-even (h) Higgs boson
- Allows for Higgs loophole at LEP:
- SM-like h (within LEP kinematic reach), decaying mostly as $h \rightarrow aa$
- M_a < 2m_b: a → TT, gg, cc
 m only looked for by OPAL in MSSM context
 - limited to $m_h < 86 \text{ GeV}$

- CDF analysis (2.7 fb-1): search in I+jets sample (regular tt event w/ extra T⁺T⁻ pair)
 - soft T's identify through add'l isolated track
 - backgrounds:

new

- underlying event (universal pT spectrum, check in I+I/2jet events)
- Z/γ^* +jets (I lepton missed or from τ decay)

- CDF analysis (2.7 fb-1): search in I+jets sample (regular tt event w/ extra T⁺T⁻ pair)
 - soft T's identify through add'l isolated track
 - backgrounds:

Charged

~100GeV

new

CP-odd neutral higgs

mass < 2m

- underlying event (universal pT spectrum, check in I+I/2jet events)
- Z/γ^* +jets (I lepton missed or from τ decay)

- UE normalisation inferred from btagged 3-jet data
- signal shown at exclusion level

- CDF analysis (2.7 fb-1): search in I+jets sample (regular tt event w/ extra T⁺T⁻ pair)
 - soft T's identify through add'l isolated track
 - backgrounds:
 - underlying event (universal pT spectrum, check in I+I/2jet events)

50F

40

10

0

4

6

10

12

Lead Track p_ (GeV/c)

• Z/γ^* +jets (I lepton missed or from τ decay)

- UE normalisation inferred from btagged 3-jet data
- signal shown at exclusion level

SM Boson Daughter Tracks

16

18

20

Underlying Event

CDF Run II Preliminary, L=2.7fb⁻¹

14

new

- CDF analysis (2.7 fb-1): search in I+jets sample (regular tt event w/ extra T⁺T⁻ pair)
 - soft T's identify through add'l isolated track
 - backgrounds:

new

- underlying event (universal pT spectrum, check in I+I/2jet events)
- Z/γ^* +jets (I lepton missed or from τ decay)

NMSSM: Neutral Higgs Boson

- D0 analysis (4.2 fb⁻¹): search for gg \rightarrow h \rightarrow aa, with a $\rightarrow \mu^+\mu^-/\tau^+\tau$ in inclusive dimuon events (p_T > 10 GeV)
- $2m_{\mu} < m_a < 2m_{\tau}$: muons too collinear to be reconstructed separately \implies association with track (R < I) only (NB: BF uncertain)

NMSSM: Neutral Higgs Boson

- D0 analysis (4.2 fb⁻¹): search for gg \rightarrow h \rightarrow aa, with a $\rightarrow \mu^+\mu^-/\tau^+\tau$ in inclusive dimuon events (p_T > 10 GeV)
 - $2m_{\mu} < m_a < 2m_{\tau}$: muons too collinear to be reconstructed separately \implies association with track (R < I) only (NB: BF uncertain)
 - $m_a > 2m_\tau (\mu^+ \mu^- \tau^+ \tau^-)$: reconstruct $a \rightarrow \mu^+ \mu^-$ candidates explicitly

NMSSM: Neutral Higgs Boson

- D0 analysis (4.2 fb⁻¹): search for gg \rightarrow h \rightarrow aa, with a $\rightarrow \mu^+\mu^-/\tau^+\tau$ in inclusive dimuon events (p_T > 10 GeV)
 - $2m_{\mu} < m_a < 2m_{\tau}$: muons too collinear to be reconstructed separately \implies association with track (R < I) only (NB: BF uncertain)
 - $m_a > 2m_T (\mu^+ \mu^- \tau^+ \tau^-)$: reconstruct $a \rightarrow \mu^+ \mu^-$ candidates explicitly

Not Discussed

- Fermiophobic Higgs boson searches
- CDF W[±]h \rightarrow W[±]W⁺W⁻ (2.7 fb⁻¹)
- D0 hhW[±] $\rightarrow \gamma \gamma \gamma \gamma W^{\pm}$ (0.8 fb⁻¹)
- Doubly charged Higgs boson searches
- D0 H⁺⁺H⁻⁻ $\rightarrow \mu^+\mu^+\mu^-\mu^-$ (1.1 fb⁻¹)
- CDF H⁺⁺H⁻⁻ \rightarrow I⁺ τ^+ I⁻ τ^- (0.3 fb⁻¹)

Conclusion & Outlook

- Consolidation in mainstream MSSM analyses
- First MSSM combinations have been performed
- Analyses with significantly larger datasets are underway
- In the near future, the Tevatron will likely continue to play an important role in BSM Higgs physics